
Multi-Period Corporate Default Prediction

With Stochastic Covariates∗

Darrell Duffie, Leandro Saita, and Ke Wang

First Version: August 30, 2003
Current Version: September 1, 2005

Abstract

We provide maximum likelihood estimators of term structures of
conditional probabilities of corporate default, incorporating the dy-
namics of firm-specific and macroeconomic covariates. For U.S. In-
dustrial firms, based on over 390,000 firm-months of data spanning
1980 to 2004, the level and shape of the estimated term structure of
conditional future default probabilities depends on a firm’s distance to
default (a volatility-adjusted measure of leverage), on the firm’s trail-
ing stock return, on trailing S& P 500 returns, and on U.S. interest
rates, among other covariates. Variation in a firm’s distance to de-
fault has a substantially greater effect on the term structure of future
default hazard rates than does a comparatively significant change in
any of the other covariates. Default intensities are estimated to be
lower with higher short-term interest rates. The out-of-sample predic-
tive performance of the model is an improvement over that of other
available models.
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1 Introduction

We provide maximum likelihood estimators of term structures of conditional
corporate default probabilities. Our main contribution over prior work is
to exploit the time-series dynamics of the explanatory covariates in order
to estimate the likelihood of default over several future periods (quarters or
years). We estimate our model for U.S.-listed Industrial firms, using over
390,000 firm-months of data on over 2700 firms for the period 1980 to 2004.
We find evidence of significant dependence of the level and shape of the term
structure of conditional future default probabilities on a firm’s distance to
default (a volatility-adjusted measure of leverage) and on U.S. interest rates
and stock-market returns, among other covariates. Variation in a firm’s dis-
tance to default has a substantially greater effect on the term structure of
future default hazard rates than does a comparatively significant change in
any of the other covariates. The shape of the term structure of conditional
default probabilities reflects the time-series behavior of the covariates, espe-
cially leverage targeting by firms and mean reversion in macroeconomic per-
formance. Out-of-sample predictive performance improves on that of other
available models, as detailed in Section 5.

Our model is based on a Markov state vector Xt of firm-specific and
macroeconomic covariates that causes variation over time in a firm’s default
intensity λt = Λ(Xt), which is the conditional mean arrival rate of default
measured in events per year. The firm exits for other reasons, such as merger
or acquisition, with an intensity αt = A(Xt). The total exit intensity is thus
αt + λt. We specify a doubly-stochastic formulation of the point process for
default and other forms of exit under which the conditional probability of
default within s years is

q(Xt, s) = E

(
∫ t+s

t

e−
R

z

t
(λ(u)+α(u)) duλ(z) dz

∣

∣

∣

∣

Xt

)

. (1)

This calculation reflects the fact that a firm cannot default at time t if it has
already disappeared for some other reason.

While there is a significant prior literature treating the estimation of one-
period-ahead default (or bankruptcy) probabilities, for example with logit
models, we believe that this is the first empirical study of conditional default
probabilities over multiple future time periods that incorporates the time
dynamics of the covariates. The sole exception seems to be the practice of
treating the credit rating of a firm as though a Markov chain, with ratings
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transition probabilities estimated as long-term average ratings transition fre-
quencies. It is by now well understood, however, that the current rating
of a firm does not incorporate much of the influence of the business cycle
on default rates (Nickell, Perraudin, and Varotto (2000), Kavvathas (2001),
Wilson (1997a), Wilson (1997b)), nor the important effect of prior ratings
history (Behar and Nagpal (1999), Lando and Skødeberg (2002)). There is,
moreover, significant heterogeneity in the short-term default probabilities of
different firms of the same current rating (Kealhofer (2003)). As explained
in Section 5, the out-of-sample performance of ratings-based default proba-
bilities are poorer than those of other available models.

We anticipate several types of applications for our work, including (i) the
analysis by a bank of the credit quality of a borrower over various future
potential borrowing periods, (ii) the determination by banks and bank regu-
lators of the appropriate level of capital to be held by a bank, in light of the
credit risk represented by its loan portfolio, especially given the upcoming
Basel II accord, under which borrower default probabilities play an explicit
role in capital requirements, (iii) the determination of credit ratings by rat-
ing agencies, and (iv) the ability to shed some light on the macroeconomic
links between business-cycle variables and the default risks of corporations.

Absent a model that incorporates the dynamics of the underlying covari-
ates, one cannot extrapolate prior models of one-quarter-ahead or one-year-
ahead default probabilities to longer time horizons. Campbell, Hilscher, and
Szilagyi (2005) instead estimate separate logit models for default probabil-
ities at each of a range of time horizons, although not taking advantage of
joint consistency conditions across those horizons.1

The conditional default probability q(Xt, s) of (1) depends on:

• a parameter vector β determining the dependence of the default and
other-exit intensities, Λ(Xt) and A(Xt), respectively, on the covariate
vector Xt, and

• a parameter vector γ determining the time-series behavior of the un-
derlying state vector Xt of covariates.

The doubly-stochastic assumption, stated more precisely in Section 2, is
that, conditional on the path of the underlying state process X determining

1Philosophov and Philiosophov (2002) estimate a model of default probabilities at var-
ious horizons, although not exploiting the time dynamics of the covariates.
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default and other exit intensities, exit times are the first event times of inde-
pendent Poisson processes.2 In particular, this means that, given the path of
the state-vector process, the merger and default times of different firms are
conditionally independent.

A major advantage of the doubly-stochastic formulation is that it allows
decoupled maximum-likelihood estimations of β and γ, which can then be
combined to obtain the maximum-likelihood estimator of the default prob-
ability q(Xt, s), and other properties of the model, such as probabilities of
joint default of more than one firm. Because of this decoupling, the resulting
estimator of the intensity parameter vector β is the same as that of a con-
ventional competing-risks duration model with time-varying covariates. The
maximum likelihood estimator of the time-series parameter vector γ would
depend of course on the particular specification adopted for the behavior of
the state process X. For examples, we could allow the state process X to
have GARCH volatility behavior, to depend on Markov chain “regimes,” or
to have jump-diffusive behavior. For our specific empirical application, we
have adopted a simple Gaussian vector auto-regressive specification.

The doubly-stochastic assumption is overly restrictive to the extent that
default or another form of exit by one firm could have an important direct
influence on the default or other-exit intensity of another firm. This influence
would be anticipated to some degree if one firm plays a relatively large role
in the marketplace of another. The doubly-stochastic property does not fit
the data well, according to tests developed by Das, Duffie, Kapadia, and
Saita (2005). Our empirical results should therefore be treated with caution.
In any case, we show substantially improved out-of-sample performance over
prior models. For example, the average accuracy ratio (as defined in Section
5) for one-year-ahead out-of-sample default prediction by our model, over
1993-2003, is 88%. Hamilton and Cantor (2004) report that, for 1999-2003,
accuracy ratios based on Moody’s3 credit ratings average 65%, while allowing
ratings adjustments for placements on Watchlist and Outlook are 69%, and
those based on sorting firms by bond yield spreads average 74%. More details
on out-of-sample performance are provided in Section 5.

Our methods also allow estimation of the likelihood, by some future date,

2One must take care in interpreting this characterization when treating the “internal
covariates,” those that are firm-specific and therefore no longer available after exit, as
explained in Section 2.

3Krämer and Güttler (2003) report no statistically significant difference between the
accuracy ratio of Moodys and Standard-and-Poors ratings in a sample of 1927 borrowers.
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of either default or a given increase in conditional default probability. This
and related transition-risk calculations could play a role in credit rating, risk
management, and regulatory applications. The estimated model can be fur-
ther used to calculate probabilities of joint default of groups of firms, or other
properties related to default correlation. In a doubly-stochastic setting, de-
fault correlation between firms arises from correlation in their default inten-
sities due to (i) common dependence of these intensities on macro-variables
and (ii) correlation across firms of firm-specific covariates. Our model under-
estimates default correlation relative to average pairwise sample correlations
of default reported in DeServigny and Renault (2002).

Our econometric methodology may be useful in other subject areas re-
quiring estimators of multi-period survival probabilities under exit intensities
that depend on covariates with pronounced time-series dynamics. Examples
could include the timing of real options such as technology switch, mortgage
prepayment, securities issuance, and labor mobility. We are unaware of previ-
ously available econometric methodologies for multi-period event prediction
that exploit the estimated time-series behavior of the underlying stochastic
covariates.

1.1 Related Literature

A standard structural model of default timing assumes that a corporation
defaults when its assets drop to a sufficiently low level relative to its liabilities.
For example, the models of Black and Scholes (1973), Merton (1974), Fisher,
Heinkel, and Zechner (1989), and Leland (1994) take the asset process to be
a geometric Brownian motion. In these models, a firm’s conditional default
probability is completely determined by its distance to default, which is the
number of standard deviations of annual asset growth by which the asset level
(or expected asset level at a given time horizon) exceeds the firm’s liabilities.
This default covariate, using market equity data and accounting data for
liabilities, has been adopted in industry practice by Moody’s KMV, a leading
provider of estimates of default probabilities for essentially all publicly traded
firms. (See Crosbie and Bohn (2002) and Kealhofer (2003).)

Based on this theoretical foundation, it seems natural to include distance
to default as a covariate. Even in the context of a standard structural de-
fault model of this type, however, Duffie and Lando (2001) show that if the
distance to default cannot be accurately measured, then a filtering problem
arises, and the default intensity depends on the measured distance to de-
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fault and also on other covariates that may reveal additional information
about the firm’s conditional default probability. More generally, a firm’s
financial health may have multiple influences over time. For example, firm-
specific, sector-wide, and macroeconomic state variables may all influence
the evolution of corporate earnings and leverage. Given the usual benefits of
parsimony, and especially given the need to model the joint time-series be-
havior of all covariates chosen, the model of default probabilities estimated
in this paper adopts a relatively small set of firm-specific and macroeconomic
covariates.

Prior empirical models of corporate default probabilities, reviewed by
Jones (1987) and Hillegeist et al. (2004), have relied on many types of co-
variates, both fixed and time-varying. Empirical corporate default analysis
originated with Beaver (1966), Beaver (1968a), Beaver (1968b), and Altman
(1968), who applied multivariate discriminant analysis. Among the covari-
ates in Altman’s “Z-score” is a measure of leverage, defined as the market
value of equity divided by the book value of total debt. Distance to default
is essentially a volatility-corrected measure of leverage.

A second generation of empirical work is based on qualitative-response
models, such as logit and probit. Among these, Ohlson (1980) used an “O-
score” method in his year-ahead default prediction model.

The latest generation of modeling is dominated by duration analysis.
Early in this literature is the work of Lane, Looney, and Wansley (1986) on
bank default prediction, using time-independent covariates.4 These models
typically apply a Cox proportional-hazard model. Lee and Urrutia (1996)
used a duration model based on a Weibull distribution of default time. They
compare duration and logit models in forecasting insurer insolvency, finding
that, for their data, a duration model identifies more significant variables
than does a logit model. Duration models based on time-varying covari-
ates include those of McDonald and Van de Gucht (1999), in a model of
the timing of high-yield bond defaults and call exercises.5 Related duration
analysis by Shumway (2001), Kavvathas (2001), Chava and Jarrow (2004),
and Hillegeist, Keating, Cram, and Lundstedt (2004) predict bankruptcy.6

Shumway (2001) uses a discrete duration model with time-dependent co-
variates. Computationally, this is equivalent to a multi-period logit model

4Whalen (1991) and Wheelock and Wilson (2000) also used Cox proportional-hazard
models for bank default analysis.

5Meyer (1990) used a similar approach in a study of unemployment duration.
6Kavvathas (2001) also analyzes the transition of credit ratings.
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with an adjusted-standard-error structure. In predicting one-year default,
Hillegeist, Keating, Cram, and Lundstedt (2004) also exploit a discrete du-
ration model. By taking as a covariate the theoretical probability of default
implied by the Black-Scholes-Merton’s model, based on distance to default,
Hillegeist, Keating, Cram, and Lundstedt (2004) find, at least in this model
setting, that distance to default does not entirely explain variation in default
probabilities across firms. This is supported by Bharath and Shumway (2004)
and Campbell, Hilscher, and Szilagyi (2005), who find that in the presence of
market leverage and volatility information, among other covariates, distance
to default adds relatively little informatiom. Further discussion of the selec-
tion of covariates for corporate default prediction may be found in Section
3.2.

Moving from the empirical literature on corporate default prediction to
statistical methods available for this task, typical econometric treatments of
stochastic intensity models include those of Lancaster (1990) and Kalbfleisch
and Prentice (2002).7 In their language, our macro-covariates are “external,”
and our firm-specific covariates are “internal,” that is, cease to be generated
once a firm has failed. These sources do not treat large-sample properties, nor
indeed do large-sample properties appear to have been developed in a form
suitable for our application. For example, Berman and Frydman (1999) do
provide asymptotic properties for maximum-likelihood estimators of stochas-
tic intensity models, including a version of Cramèr’s Theorem, but treat only
cases in which the covariate vector Xt is fully external (with known transi-
tion distribution), and in which event arrivals continue to occur, repeatedly,
at the specified parameter-dependent arrival intensity. This clearly does not
treat our setting, for a firm typically disappears once it fails.8

7For other textbook treatments, see Andersen, Borgan, Gill, and Keiding (1992), Miller
(1981), Cox and Isham (1980), Cox and Oakes (1984), Daley and Vere-Jones (1988), and
Therneau and Grambsch (2000).

8For the same reason, the autoregressive conditional duration framework of Engle and
Russell (1998) and Engle and Russell (2002) is not suitable for our setting, for the updating
of the conditional probability of an arrival in the next time period depends on whether
an arrival occured during the previous period, which again does not treat a firm that
disappears once it defaults.
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2 Econometric Model

This section outlines our probabilistic model for corporate survival, and the
estimators that we propose. The following section applies the estimator to
data on U.S.-listed Industrial firms, and Section 5 discusses out-of-sample
performance.

2.1 Conditional Survival and Default Probabilities

Fixing a probability space (Ω,F , P ) and an information filtration {Gt : t ≥ 0}
satisfying the usual conditions,9 let X = {Xt : t ≥ 0} be a time-homogeneous
Markov process in R

d, for some integer d ≥ 1. The state vector Xt is
a covariate for a given firm’s exit intensities, in the following sense. Let
(M,N) be a doubly-stochastic non-explosive two-dimensional counting pro-
cess driven by X, with intensities α = {αt = A(Xt) : t ∈ [0,∞)} for M and
λ = {λt = Λ(Xt) : t ≥ 0} for N , for some non-negative real-valued measur-
able functions A( · ) and Λ( · ) on R

d. Among other implications, this means
that, conditional on the path of X, the counting processes M and N are
independent Poisson processes with conditionally deterministic time-varying
intensities, α and λ, respectively. For details on these definitions, one may
refer to Karr (1991) and Appendix I of Duffie (2001).

We suppose that a given firm exits (and ceases to be observable) at τ =
inf{t : Mt + Nt > 0}, which is the earlier of the first event time of N ,
corresponding to default, and the first event time of M , corresponding to
exit for some other reason. In our application to U.S.-listed Industrial firms,
the portion of exits for reasons other than default is far too substantial to be
ignored.

The main idea is that, so long as the firm has not exited for some reason,
its default intensity is Λ(Xt) and its intensity of exit for other reasons is
A(Xt).

It is important to allow the state vector Xt to include firm-specific de-
fault covariates that cease to be observable when the firm exits at τ . For
simplicity, we suppose that Xt = (Ut, Yt), where Ut is firm-specific and Yt

is macroeconomic. Thus, we consider conditioning by an observer whose in-
formation is given by the smaller filtration {Ft : t ≥ 0}, where Ft is the

9See Protter (1990) for technical definitions.
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σ-algebra generated by

{(Us,Ms, Ns) : s ≤ min(t, τ)} ∪ {Ys : s ≤ t}.

The firm’s default time is the stopping time T = inf{t : Nt > 0,Mt = 0}.
We now verify the formula (1) for default probabilities.

Proposition 1. On the event {τ > t} of survival to t, the Ft-conditional
probability of survival to time t+ s is

P (τ > t+ s | Ft) = p(Xt, s) ≡ E

(

e−
R

t+s

t
(λ(u)+α(u)) du

∣

∣

∣

∣

Xt

)

, (2)

and the Ft-conditional probability of default by t+ s is

P (T < t+ s | Ft) = q(Xt, s),

where q(Xt, s) is given by (1).

Proof: We begin by conditioning instead on the larger information set Gt,
and later show that this does not affect the calculation.

We first calculate that, on the event {τ > t},

P (τ > t+ s | Gt) = E

(

e−
R

t+s

t
(λ(u)+α(u)) du

∣

∣

∣

∣

Xt

)

, (3)

and

P (T < t+ s | Gt) = q(Xt, s). (4)

The first calculation (3) is standard, using the fact that M +N is a doubly-
stochastic counting process with intensity α+ λ. For the second calculation
(4), we use the fact that, conditional on the path of X, the (improper)
density, evaluated at any time z > t, of the default time T , exploiting the
X-conditional independence of M and N is, with the standard abuse of
notation,

P (T ∈ dz |X) = P (inf{u : Nu 6= Nt} ∈ dz,Mz = Mt |X)

= P (inf{u : Nu 6= Nt} ∈ dz |X)P (Mz = Mt |X)

= e−
R

z

t
λ(u) duλ(z) dz e−

R

z

t
α(u) du

= e−
R

z

t
(α(u)+λ(u)) duλ(z) dz.
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From the doubly-stochastic property, conditioning also on Gt has no effect
on this calculation, so

P (T ∈ [t, t+ s] | Gt, X) =

∫ t+s

t

e−
R

z

t
(α(u)+λ(u)) duλ(z) dz.

Now, taking the expectation of this conditional probability given Gt only,
using the law of iterated expectations, leaves (4).

On the event {τ > t}, the conditioning information in Ft and Gt coincide.
That is, every event contained by {τ > t} that is in Gt is also in Ft. The
result follows.

One can calculate p(Xt, s) and q(Xt, s) explicitly in certain settings, for
example if the state vector X is affine and the exit intensities have affine de-
pendence on X. In our eventual application, however, the intensities depend
non-linearly on an affine process Xt, which calls for numerical computation
of p(Xt, s) and q(Xt, s). Fortunately, this numerical calculation is done after
obtaining maximum-likelihood estimates of the parameters of the model.

2.2 Maximum Likelihood Estimator

We turn to the problem of inference from data.
For each of n firms, we let Ti = inf{t : Nit > 0,Mit = 0} denote the

default time of firm i, and let Si = inf{t : Mit > 0, Nit = 0} denote the
censoring time for firm i due to other forms of exit. We let Uit be the firm-
specific vector of variables that are observable for firm i until its exit time
τi = min(Si, Ti), and let Yt denote the vector of environmental variables
(such as business-cycle variables) that are observable at all times. We let
Xit = (Uit, Yt), and assume, for each i, that Xi = {Xit : t ≥ 0} is a Markov
process. (This means that, given Yt, the transition probabilities of Uit do
not depend on Ujt for j 6= i, a simplifying assumption.) Because, in our
current implementation of the model, we observe these covariates Xit only
monthly or less frequently, we take Xit = Xi,k(t) = Zi,k(t), where k(t) denotes
the last (integer) discrete time period before t, and where Zi is the time-
homogeneous discrete-time Markov process of covariates for firm i. This
means that Xit is constant between periodic observations, a form of time-
inhomogeneity that involves only a slight extension of our basic theory of
Section 2.1. We continue to measure time continuously, however, in order to
take advantage of information on intra-period timing of exits.
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Extending our notation from Section 2.1, for all i, we let Λ(Xit, β) and
A(Xit, β) denote the default and other-exit intensities of firm i, where β is a
parameter vector, common to all firms, to be estimated. This homogeneity
across firms allows us to exploit both time-series and cross-sectional data,
and is traditional in duration models of default such as Shumway (2001).
This leads to inaccurate estimators to the degree that the underlying firms
are actually heterogeneous in this regard. We do, however, allow for hetero-
geneity across firms with respect to the probability transition distributions
of the Markov covariate processes Z1, . . . , Zn of the n firms. For example,
some firms may have different target leverage ratios than others.

We assume that the exit-counting process (M1, N1, . . . ,Mn, Nn) of the
n firms is doubly-stochastic driven by X = (X1, . . . , Xn), in the sense of
Section 2.1, so that the exit times τ1, . . . , τn of the n firms areX-conditionally
independent, as discussed in Section 1. There is some important loss of
generality here, for this implies that the exit of one firm has no direct impact
on the default intensity of another firm. Their default times are correlated
only insofar as their exit intensities are correlated.

The econometrician’s information set Ft at time t is

It = {Ys : s ≤ t} ∪ J1t ∪ J2t · · · ∪ Jnt,

where
Jit = {(1Si<u, 1Ti<u, Uiu) : t0i ≤ u ≤ min(Si, Ti, t)}

is the information set for firm i, and where t0i is the time of first appearance
of firm i in the data set. For simplicity, we take t0i to be at the end of a
discrete time period and deterministic, but our results would extend to treat
left-censoring of each firm at a stopping time, under suitable conditional
independence assumptions.

In order to simplify the estimation of the time-series model of covariates,
we suppose that the environmental discrete-time covariate process {Y1, Y2, . . .}
is itself a time-homogeneous (discrete-time) Markov process.

Conditional on the current combined covariate vector Zk = (Z1k, . . . , Znk),
we suppose that Zk+1 has a joint density f( · |Zk; γ), for some parameter vec-
tor γ to be estimated. Despite our prior Markov assumption on the covariate
process {Zik : k ≥ 1} for each firm i, this allows for conditional correla-
tion between Ui,k+1 and Uj,k+1 given (Yk, Uik, Ujk). We emphasize that this
transition density f( · ) is not conditioned on survivorship.
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As a notational convenience, whenever K ⊂ L ⊂ {1, . . . , n} we let
fKL( · | Yk, {Uik : i ∈ L}; γ) denote the joint density of (Yk+1, {Ui,k+1 : i ∈
K}) given Yk and {Uik : i ∈ L}, which is a property of (in effect, a marginal
of) f( · |Zk; γ). In our eventual application, we will further assume that
f( · | z; γ) is a joint-normal density, which makes the marginal density func-
tion fKL( · | y, {ui : i ∈ L}) an easily-calculated joint normal.

For additional convenient notation, let R(k) = {i : τi > k} denote the
set of firms that survive to at least period k, let Ũk = {Uik : i ∈ R(k)},
Si(t) = min(t, Si), S(t) = (S1(t), . . . , Sn(t)), and likewise define Ti(t) and
T (t). Under our doubly-stochastic assumption, the likelihood for the infor-
mation set It is

L(It; γ, β) = L(Ũ , Y, t; γ) × L(S(t), T (t);Y, Ũ, β), (5)

where

L(Ũ , Y, t; γ) =

k(t)
∏

k=0

fR(k+1),R(k)(Yk+1, Ũk+1 | Yk, Ũk; γ), (6)

and

L(S(t), T (t);Y, Ũ ; β) =

n
∏

i=1

Git(β), (7)

for

Git(β) = exp

(

−
∫ Hi

t0
i

(A(Zi,k(s); β) + Λ(Zi,k(s); β)) ds

)

×
(

1Hi= t + A(Zi,Si
; β)1Si(t)<t + Λ(Zi,Ti

; β)1Ti(t)<t

)

,

where Hi = min(Si(t), Ti(t)) = min(τi, t).
Because the logarithm of the joint likelihood (5) is the sum of separate

terms involving γ and β respectively, we can decompose the overall maximum
likelihood estimation problem into the separate problems

sup
γ

L(Ũ , Y, t; γ) (8)

and

sup
β

L(S(t), T (t);Y, Ũ, β). (9)
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Further simplification is obtained by taking the parameter vector β de-
termining the dependencies of the intensities on the covariates to be of the
decoupled form β = (µ, ν), with

λit = Λ(Xit;µ); αit = A(Xit; ν). (10)

(This involves a slight abuse of notation.) This means that the form of de-
pendence of the default intensity on the covariate vector Xit does not restrict
the form of the dependence of the other-exit intensity, and vice versa. An
examination of the structure of (9) reveals that this decoupling assumption
allows problem (9) to be further decomposed into the pair of problems

sup
µ

n
∏

i=1

e
−

R Hi

t0
i

Λ(Xi(u);µ) du
(1Hi 6=Ti

+ Λ(Xi(Ti);µ)1Hi=Ti
) (11)

and

sup
ν

n
∏

i=1

e
−

R Hi

t0
i

A(Xi(u);ν) du
(1Hi 6=Si

+ A(Xi(Si); ν)1Hi=Si
) . (12)

We have the following result, which summarizes our parameter-fitting algo-
rithm.

Proposition 2. Solutions γ∗ and β∗ of the respective maximum-likelihood
problems (8) and (9) collectively form a solution to the overall maximum-
likelihood problem

sup
γ,β

L(It; γ, β). (13)

Under the parameter-decoupling assumption (10), solutions µ∗ and ν∗ to the
maximum-likelihood problems (11) and (12), respectively, form a solution
β∗ = (µ∗, ν∗) to problem (9).

The decomposition of the MLE optimization problem given by Proposition
2 allows a significant degree of tractability.

Under the usual technical regularity conditions, given a maximum-likelihood
estimator (MLE) θ̂ for some parameter θ, the maximium-likelihood estima-
tor (MLE) of h(θ), for some smooth function h( · ), is h(θ̂). Thus, under
these technical conditions, the maximum likelihood estimators of the default
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probability q(Xt, s) and the survival probability p(Xt, s) are obtained by (1)
and (2), respectively, after replacing β = (µ, ν) and γ with their maximum
likelihood estimators, β̂ and γ̂.

Under further technical conditions, an MLE is consistent, efficient, and
asymptotically normal, in the sense that the difference between the maximum-
likelihood estimator and the “true” data-generating parameter, scaled by the
square root of the number of observations, converges weakly to a vector whose
distribution is joint normal with mean zero and a well-known covariance ma-
trix (Amemiya 1985). In our case, it is apparent that a consistency result
would require that both the number n of firms and the number k(t) of periods
of data become large in this sense. We defer precise consistency conditions
to future research.

3 Empirical Analysis

This section describes our data set, the parameterization of our covariate
processes and intensity models, a summary of the properties of our parameter
estimates, and some of the substantive conclusions regarding the behavior
of conditional term structures of default hazard rates. We are particularly
interested in the sensitivity of these term structures of default hazard rates
to firm-specific and macroeconomic variables.

3.1 Data

Our sample period is 1980 to 2004. For each firm, short-term and long-
term debt data are from quarterly and yearly Compustat files. Short-term
debt is estimated as the larger of Compustat items DATA45 and DATA49.
Long-term debt is taken from DATA51, while DATA61 provides the number
of common shares outstanding, quarterly.10 The number of common shares

10For annual data, the corresponding records are DATA34, DATA5, DATA9, and
DATA25, respectively. For cases with missing debt data, if the missing value corresponds
to year Y , quarter Q, then we complete the data whenever possible as follows. First, we
only consider there to be missing data for firm F at year Y , quarter Q if there is debt data
for firm F before and after Y , Q. Given that, if there is non-missing quarterly debt data
for F in year Y , we take the closest observation to quarter Q, after quarter Q, to complete
the dataset. If all quarterly debt observations for F in year Y are missing, we look in the
yearly debt file for firm F , year Y . If this observation is not missing we take it to be the
debt level for year Y , quarter Q, firm F . In all other cases of missing observations we take
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outstanding is combined with Compustat’s stock price data (data item PRC)
to compute the value of total equity.

Data on the timing of default, merger, other-exit, and bankruptcy are
mainly from Moodys Default Risk Service11 and the CRSP/Compustat database.
For cases in which a firm exits our database and no exit reason appears in
either of these sources, we refer to Bloomberg’s CACS function, SDC, CRSP,
and, when necessary, other sources. CRSP/Compustat provides reasons for
deletion of firms, and the year and month of deletion (data items AFTNT35,
AFTNT34, and AFTNT33, respectively). The reasons for deletion are coded
1-10. (Code 2 is bankruptcy under Chapter 11; Code 3 is bankruptcy under
Chapter 7.)

A firm is included in our dataset provided it has a common firm identifier
for the Moodys and Compustat databases, and is of the Moodys “Industrial”
category. We also restrict attention to firms for which we have at least 6
months of monthly Compustat data. We are left with 2,770 firms, covering
392,404 firm-months of data.

Table 1 shows the number of firms in each of the following exit categories:

• Bankruptcy. An exit is treated for our purposes as a bankruptcy if
coded in Moodys database under any of the following categories of
events: Bankruptcy, Bankruptcy Section 77, Chapter 10,12 Chapter 11,
Chapter 7, and Prepackaged Chapter 11. A bankrutcy is also recorded
if data item AFTNT35 of Compustat is 2 or 3 (for Chapter 11 and
Chapter 7, respectively). In some cases, our data reflect bankruptcy
exits based on information from Bloomberg and other data sources.
Our dataset has 175 bankruptcy exits, although many defaults that
eventually led to bankruptcies may not appear as bankruptcy exits if
the default was triggered earlier than a bankruptcy, for example by a
missed debt payment.

• Default. A default is defined as a bankruptcy, as above, or as any of
the following additional default types in the Moodys database: dis-
tressed exchange, dividend omission, grace-period default, indenture

the data to be missing.
11Moodys Default Risk Service provides detailed issue and issuer information on rating,

default or bankruptcy, date and type of default (such as bankruptcy, distressed exchange,
or missed interest payment), tracking 34,984 firms starting in 1938.

12Chapter 10 is limited to businesses engaged in commercial or business activities, not
including real estate, whose aggregate debts do not exceed $2,500,000.
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modified, missed interest payment, missed principal and interest pay-
ments, missed principal payment, payment moratorium, suspension of
payments. We also include any defaults recorded in Bloomberg or other
data sources.

• Failure. A failure includes any default, as above, and any failures
to meet exchange listing requirements, as documented in data from
Bloomberg, CRSP, or Compustat.

• Acquisition. Exits due to acquisitions and mergers are as recorded by
Moodys, CRSP/Compustat, and Bloomberg.

• Other exits. Some firms are dropped from the CRSP/Compustat database
or the Moodys database for other specified reasons, such as reverse ac-
quisition, “no longer fits original file format,” leveraged buyout, “now
a private company,” or “Other” (CRSP/Compustat AFTNT35 codes
4, 5, 6, 9, 10 respectively). We have also temporarily included in this
category, from the Moodys database: Cross-default, Conservatorship,
Placed under administration, Seized by regulators, or Receivership, al-
though these will fall under “failure exits” in the next revision of the
paper. We also include firms that are dropped from CRSP/Compustat
for no stated reason (under item AFTNT35). When such a failure to
include a firm continues for more than 180 days, we take the last ob-
servation date to be the exit date from our dataset. Most of the other
exits are due to data gaps of various types.

Exit type Number
bankruptcy 175
default 495
failure 497
merger-acquisition 872
other 877

Table 1: Number of firm exits of each type.
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3.2 Covariates

We have examined the dependence of estimated default and other-exit in-
tensities on several types of firm-specific, sector-wide, and macroeconomic
variables. These include:

1. The firm’s distance to default, which, roughly speaking, is the number
of standard deviations of quarterly asset growth by which assets exceed
a standardized measure of liabilities. As explained in Section 1.1, this
covariate has theoretical underpinnings in the Black-Scholes-Merton
structural model of default probabilities. Our method of construction
of this covariate, based on market equity data and Compustat book
liability data, is along the lines of that used by Vassalou and Xing
(2004), Crosbie and Bohn (2002), and Hillegeist, Keating, Cram, and
Lundstedt (2004), although Bharath and Shumway (2004) point out
that default prediction performance is robust to the method by which
distance to default is estimated. Details are given in Appendix A.

2. The firm’s trailing 1-year stock return.

3. The 3-month Treasury bill rate (in percent).

4. The trailing 1-year return on the S&P 500 index.

We also considered, and rejected for lack of significance in the presence
of the above covariates, a number of additional covariates: the U.S. 10-year
treasury yield, U.S. personal income growth, U.S. GDP growth rate, aver-
age Aaa-to-Baa bond yield spread, the firm’s size (in terms of the logarithm
of the model-implied assets), and the industry-average distance to default.
Prior studies find correlation between macroeconomic conditions and default,
using a variety of macroeconomic variables. (See Allen and Saunders (2002)
for a survey.) For example, McDonald and Van de Gucht (1999) used quar-
terly industrial production13 growth in the U.S. as a covariate for high-yield
bond default. Hillegeist, Keating, Cram, and Lundstedt (2004) exploit the
national rate of corporate bankruptcies in a baseline-hazard-rate model of

13If included as an additional covariate, industrial production is marginally significant
as a determinant of default intensities, with a coefficient that is approximately twice its
standard error. We did not include it as a covariate because of its marginal role and
because of the loss in parsimony, particularly with respect to the time-series model.
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default. Fons (1991), Blume and Keim (1991), and Jonsson and Fridson
(1996) document that aggregate default rates tend to be high in the down-
turn of business cycles. Pesaran, Schuermann, Treutler, and Weiner (2003)
use a comprehensive set of country-specific macro variables to estimate the
effect of macroeconomic shocks in one region on the credit risk of a global
loan portfolio. Keenan, Sobehart, and Hamilton (1999) and Helwege and
Kleiman (1997) model the forecasting of aggregate year-ahead U.S. default
rates on corporate bonds, using, among other covariates, credit rating, age
of bond, and various macroeconomic variables, including industrial produc-
tion, interest rates, trailing default rates, aggregate corporate earnings, and
indicators for recession.

Firm-level earnings is a traditional predictor for bankruptcy since Altman
(1968). When not appearing together with distance to default, earnings is a
significant default covariate in both logit and duration models, as shown by
Shumway (2001). Chava and Jarrow (2004), Bharath and Shumway (2004),
Beaver, McNichols, and Rhie (2004), and Campbell, Hilscher, and Szilagyi
(2005) provide additional discussion of the importance of earnings and other
firm-specific accounting covariates.

The lack of significance of firm size as a default covariate is somewhat
surprising. For example, large firms are thought to have more financial flex-
ibility than small firms. The statistical significance of size as a determinant
of default risk was documented in Shumway (2001).14

4 Covariate Time-Series Model

We now specify a particular parameterization of the time-series model for the
covariates. Because of the extremely high-dimensional state-vector, which
includes the macroeconomic covariates as well as the distance to default and
size of each of almost 3000 firms, we have opted for a Gaussian first-order
vector auto-regressive time series model, with the following simple structure.

The 3-month and 10-year treasury rates, r1t and r2t, respectively, are

14Shumway (2001), takes the size covariate to be the logarithm of the firm’s stock-market
capitalization, relative to the total size of the NYSE and AMEX stock markets. We did
not find statistical significance, in the presence of our other covariates, of the logarithm
of stock-market capitalization. (The associated standard error is approximately equal to
the coefficient estimate.)
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modeled by

rt+1 = rt + kr(θr − rt) + Crεt+1 ,

where ε1, ε2, . . . are independent standard-normal vectors, Cr is a 2×2 lower-
triangular matrix, and the time step is one month. Maximum-likelihood
parameter estimates and standard errors are reported in Appendix B.

For the distance to default Dit and log-assets Vit of firm i, and the trailing
one-year S&P500 return, St, we assume that

[

Di,t+1

Vi,t+1

]

=

[

Dit

Vit

]

+

[

kD 0
0 kV

]([

θiD

θiV

]

−
[

Dit

Vit

])

+

+

[

b · (θr − rt)
0

]

+

[

σD 0
0 σV

]

ηi,t+1 , (14)

St+1 = St + kS(θS − St) + ξt+1, (15)

where

ηit = Azit +Bwt , (16)

ξt = αSut + γSwt,

for {z1t, z2t, . . . , znt, wt : t ≥ 1} that are iid 2-dimensional standard-normal,
all independent of {u1, u2, . . .}, which are independent standard normals.
The 2 × 2 matrices A and B have A12 = B12 = 0, and are normalized
so that the diagonal elements of AA′ + BB′ are 1. For estimation, some
such standardization is necessary because the joint distribution of ηit (over
all i) is determined by the 6 (non-unit) entries in AA′ +BB′ and BB′. Our
standardization makes A and B equal to the Cholesky decompositions of AA′

and BB′, respectively. For simplicity, although this is unrealistic, we assume
that ε is independent of (η, ξ). Maximum-likelihood parameter estimates,
with standard errors, are provided in Appendix B.

A positive mean-reversion parameter kD for distance to default might be
characterized as leverage targeting, by which corporations pay out dividends
and other forms of distributions when they achieve a sufficiently low degree
of leverage, and conversely attempt to raise capital and retain earnings to
a higher degree when their leverage introduces financial distress or business
inflexibility, as modeled by Leland (1998) and Collin-Dufresne and Goldstein
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(2001). Empirical evidence of leverage targeting, allowing for delays due
to frictional costs in adjusting capital structure, is provided by Leary and
Roberts (2004). We assume homogeneity of kD across the sector, as we do
not have a-priori reasons to assume that different firms in the same sector
revert to their targeted volatility-adjusted leverages differently from one an-
other, and also in order to maintain a parsimonious model in the face of
limited time-series data on each firm. (Our Monte Carlo tests confirm sub-
stantial small-sample bias of MLE estimators for firm-by-firm mean-reversion
parameters.) Because the distance to default is constructed by normalizaing
for asset volatility, as explained in Appendix A, the Merton theory would
imply that σD does not vary across firms. In any case, we did not allow σD

to vary by firm, particularly in light of the advantages of parsimony.
A key question is how to empirically model the targeted distance to de-

fault, θiD of firm i. Despite the arguments that swayed us to assume ho-
mogeneity across firms of the mean-reversion and volatility parameters kD

and σD, our preliminary analysis showed that assuming a common targeted
distance to default θiD leads to estimated term structures of future default
probabilities that rise dramatically for firms that had consistently maintained
low leverage during our sample period. Perhaps some firms derive reputa-
tional benefits from low distress risk, or have firm-specific costs of exposure
to financial distress. In the end, we opted to estimate θiD firm by firm.
The median estimate of θiD across the 2770 firms in the sample is approx-
imately 3.1, with an inter-quartile range of approximately 1.4 to 4.8. The
full cross-sectional distribution of θ̂iD and their standard errors is illustrated
in Appendix B. As a long-run-mean parameter is challenging to pin down
statistically in samples of our size, however, the standard errors of our es-
timates of θiD are responsible for a significant contribution to the standard
errors of our estimated term structures of default probabilities.

The high-dimensional parameter search required an iterative numerical
treatment. Appendix B provides portions of the parameter estimates and
standard errors that are relevant to other calculations appearing in the paper.

4.1 Default and Other-Exit Intensities

We take the default intensities to be of the proportional-hazards form

Λ(x;µ) = eµ0+µ1x1+···+µnxn , (17)
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for a covariate vector x of firm-specific and macroeconomic variables, and for
a parameter vector µ = (µ0, µ1, . . . , µn) common to all firms. The other exit
intensities have the same proportional-hazards form. The default intensity
parameter estimates and their estimated asymptotic standard errors15 are
also reported in Table 2. The associated asymptotic covariance matrix is
reported in Appendix C. For all forms of exit, the estimated standard er-
rors imply statistical significance of all covariates at conventional confidence
levels, with the exception of the dependence of the merger-acquisition exit
intensity on distance to default.

Consistent with the Black-Scholes-Merton model of default, estimated de-
fault intensities are strongly monotonically decreasing in distance to default.
For example, the parameter estimate in Table 2 reveals that a 10% reduc-
tion in distance to default causes an estimated 11.3% proportional increase
in default intensity. As we shall see in Section 4.2, distance to default domi-
nates the other covariates in economic importance when viewed in terms of
the impact of a typical (one-standard-deviation) variation of the covariate
on the term structure of default probabilities. Figure 1 shows the empirical
frequency of default within one year as a function of distance to default (with
kernel smoothing), indicating that the exponential dependence in (17) is at
least reasonable for this crucial covariate.

Controlling for other covariates, the default intensity is estimated to be
sigificantly declining in short-term interest rates. While this runs counter to
the role of interest rates in determining the interest expense of corporations
(by which higher rates place firms under more financial distress, not less),
the sign of the coefficient for the short rate is consistent with the fact that
short rates are often increased by the U.S. Federal Reserve in order to “cool
down” business expansions. Default intensities are estimated to increase in
the trailing one-year return of the S& P 500, controlling for other covariates.
This could be due to correlation between individual stock returns and S& P
500 stock returns, perhaps the trailing nature of the returns and business-
cycle dynamics.

As a rough diagnostic of the reasonableness of the overall fit of the model,
one can compare the total predicted number of defaults implied by the esti-
mated default intensity paths, about 471 (which is the integral of the total

15Standard error estimates, shown in parentheses, are asymptotic standard errors ob-
tained from Fisher’s information matrix, associated with (9). These asymptotic estimates
are within about 1% of bootstrap estimates of finite-sample standard errors obtained by
independent resampling firms with replacement.
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Exit type constant DTD return 3-mo. r SPX
bankruptcy −3.099 −1.089 −0.930 −0.153 1.074

(0.198) (0.062) (0.141) (0.037) (0.489)

default −2.156 −1.129 −0.694 −0.105 1.203
(0.113) (0.036) (0.075) (0.021) (0.289)

failure −2.148 −1.129 −0.692 −0.106 1.185
(0.113) (0.036) (0.074) (0.021) (0.289)

merger −3.220 0.021 0.310 −0.137 1.442
(0.098) (0.013) (0.050) (0.014) (0.241)

other −2.773 −0.072 0.677 −0.167 0.674
(0.095) (0.014) (0.040) (0.015) (0.231)

Table 2: Maximum likelihood estimates of intensity parameters, with parenthetic stan-
dard errors. “DTD” is distance to default, “return” is the trailing one-year stock return
of the firm, “3-mo. r” is the current 3-month treasury rate, and “SPX” is the trailing
one-year return of the S& P 500.

default intensity path shown in Figure 2), with the actual number of de-
faults during the same period, 495. The out-of-sample predictive power of
the estimated model is reviewed in Section 5.

4.2 Term Structures of Default Hazards

We are now in a position to obtain maximum-likelihood estimates, by firm
and conditioning date, of the term structure of conditional default probabil-
ities. These are obtained from their theoretical counterparts by substituting
parameter estimates into (1). In order to illustrate the results more meaning-
fully, we will report examples of the estimated probability density qs(Xit, s)
(the partial derivative of q( · ) with respect to time horizon s) of the default
time,16 and the estimated default hazard rate

H(Xit, s) =
qs(Xit, s)

p(Xit, s)
, (18)

16This density is most easily calculated by differentiation through the expectation, as

E
(

e−
R

t+s

t
[λ(u)+α(u)] duλ(t + s) |Xt

)

, which we compute by Monte-Carlo simulation. We

emphasize that this density is “improper” (integrates over all s to less than one) because
of nondefault exit events.
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Figure 1: The dependence of empirical default frequency on distance to default.

where p(Xit, s) is the estimated survival probability, from (2). The hazard
rate H(Xit, s) is mean rate of arrival of default at time t+ s, conditioning on
the covariate vector Xit at time t, and conditioning as well on the event of
survival up until time t + s. We emphasize that this default hazard rate at
time horizon s conditions on survival to time s from both default and from
other forms of exit.17 If the intensity of default and the intensity of other
forms of exit are independent processes, then controlling for survivorship
from other forms of exit has no effect on the default hazard rate. In our case,
the default intensity and other-exit intensity are correlated since they depend
on the same covariates, however the effect of this correlation on the default
hazard rates is small. In our illustrative calculations, we account for the
other-exit effects associated with merger and acquisition, viewing the other
forms of exit as less relevant in practical terms for avoiding default. Even
a merger or acquisition need not prevent the future default of a particular

17The total-exit hazard rate is, notationally suppressing all arguments of the survival
function p( · ) except for the time horizon s, given as usual by −ps(s)/p(s).
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Figure 2: The total across firms of default intensities (line), and the number of defaults
in each year (bars), 1980-2004.

debt instrument (depending, for example, on whether that debt instrument
is paid down immediately, assumed by the new corporation, or exchanged
for a new form of debt issued by the new corporation), although of course an
acquisition rules out a future bankruptcy by the acquired firm itself.

We consider Xerox as an illustrative firm, and take January 1, 2000 as the
conditioning date t. The estimated term structure of Xerox’s default hazard
rates as of that date is shown in Figure 3. The asymptotic one-standard-error
bands of the estimated hazard rates associated with parameter uncertainty
are shown with dashed lines, and are obtained by the usual “Delta method,”
as explained in Appendix C.

The estimated term structure of default hazard rates shown in Figure 3
is downward-sloping mainly because Xerox’s distance to default, 0.95, was
well below its estimated target, θ̂iD = 4.4 (which has an estimated standard
error of 1.4). Other indications that Xerox was in signficant financial distress
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Figure 3: Annualized Xerox default hazard rates as of January 1, 2001 (solid curve),
with one-standard-error bands associated with parameter uncertainty (dotted curves).

at this point were its 5-year default swap rate of 980 basis points18 and its
trailing 1-year stock return19 of −71%.

Figure 4 shows the hypothetical effects on the term structure of Xerox’s
default hazard rates of one-standard-deviation shifts (from its stationary dis-
tribution) of its distance to default, above or below its current level.20 In
terms of both the impact of normalized shocks to default intensity as well
time-series presistence, shocks to distance to default have a relatively greater
effect on the term structure of Xerox’s default hazard rates than do similarly
significant shocks to any of the other covariates. Figure 5, for example, shows
the analogous effects of a one-standard-deviation shock (from its stationary

18This CDS rate is an average of quotes provided from GFI and Lombard Risk.
19As an intensity covariate, the trailing-stock-return covariate is measured on a contin-

uously compounding basis, and was −124%.
20For example, with a mean-reversion parameter of κY and an innovation standard

deviation of σY , the stationary distribution of a first-order autoregressive process Y has a
standard deviation whose maximum likelihood estimate is dY = σ̂2

Y
/(1 − (1 − κ̂Y )2).
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Figure 4: Annualized Xerox default hazard rates as of January 1, 2000 (solid curve),
and with distance to default at one standard deviation (1.33) below its current level of
0.95 (dotted curve), and with distance to default at one standard deviation above current
level (dashed curve). The trailing S& P 500 return was −8.6%, the trailing one-year stock
return of Xerox was −71%, the 3-month treasury rate was 5.8%, and the 10-year treasury
yield was 5.2%.

distribution) to the current short-term interest rate. The effect of such a shift
in interest rates has a smaller effect than the effect of the analogous shift to
Xerox’s distance to default, both because of the relative sizes of these shocks,
as scaled by the corresponding intensity coefficients, and also because inter-
est rates are less persistent (have a higher mean-reversion rate) than distance
to default.

By the beginning of 2004, Xerox’s term structure of hazard rates had
shrunk dramatically to that shown in Figure 6, mainly because its distance
to default had grown to 3.7. The short-maturity hazard rates were also re-
duced by the Xerox’s high trailing one-year stock return of21 +95%. The

21On a continuously-compounding basis, the trailing one-year return was 67%.

25



0 0.5 1 1.5 2 2.5 3 3.5 4
0

100

200

300

400

500

600

700

Years ahead

A
nn

ua
liz

ed
 h

az
ar

d 
ra

te
 (

ba
si

s 
po

in
ts

)

Figure 5: Annualized Xerox default hazard rates as of January 1, 2000 (solid curve), and
with the 3-month treasury rate at one standard deviation (3.6%) below the current level
of 5.8% (dotted curve), and at one standard deviation above the current level (dashed
curve).

shape of the term structure of hazard rates is also influenced by the non-
linear dependence of the covariate-conditional default probabilities on future
covariates combined with uncertainty over these future covariates. For exam-
ple, the term structure of hazard rates can be upward sloping even when the
initial covariates are at their long-run means. There are two opposing “con-
vexity” effects here, both due to Jensen’s Inequality. First, the intensities
are convex with respect to the covariates so the expected future intensities
are higher than the intensities evaluated at the expected covariates. Second,
the conditional survival probabilities are convex with respect to the path of
intensities, so the survival probablities are higher (and default probabilities
are lower) than they would be when evaluated at the expected path of the
intensities. These competing effects are not canceling.
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Figure 6: Annualized Xerox default hazard rates as of January 1, 2004 (solid curve),
and with distance to default at one standard deviation (1.33) below its current level of 3.7
(dotted curve), and with distance to default at one standard deviation above current level
(dashed curve).

Figure 7 shows the estimated conditional probability density function of
Xerox’s default time as of January 1, 2004, and how much larger this default-
time density would be if one were to ignore the effect of merger and acquisi-
tion (that is, if one assumes that the merger-acquisition intensity parameter
vector ν is zero). For example, Xerox obviously cannot itself fail more than
one year into the future in the event that it is merged with another firm in
less than one year.

As illustrated above, the shapes of the term structure of Xerox’s condi-
tional default hazard rates for future years reflects the time-series dynamics
of the covariates. The counter-cyclical behavior of default probabilities is al-
ready well documented in such prior studies as Fons (1991), Blume and Keim
(1991), Jonsson and Fridson (1996), McDonald and Van de Gucht (1999),
Hillegeist, Keating, Cram, and Lundstedt (2004), Chava and Jarrow (2004),
and Vassalou and Xing (2004). A marginal contribution of this paper is the
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Figure 7: Estimated conditional density of Xerox’s default time as of January 1, 2001.
Bottom plot: the estimated default time density, incorporating the impact of survival from
merger and acquisition. Top plot: the estimated default-time density obtained by ignoring
(setting to zero) the intensity of other exits.

ability to estimate the influence of firm-specific and macro-covariates on the
likelihood of corporate default, not just during the immediately subsequent
time period, but also for a number additional time periods into the future,
incorporating the effects of mean reversion, volatilities, and correlation.

5 Out-of-Sample Performance

We now review the out-of-sample ability of our model to sort firms according
to estimated default likelihoods at various time horizons. Traditional tools
for this purpose are the “power curve” and the associated “accuracy ratio.”
The one-year power curve illustrated in Figure 8, for example, shows that
the “worst” 20% of the firms in the sample, according to estimated one-
year default probability, accounted for approximately 92% of the firms that
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actually defaulted in the subsequent one-year period, on average over the
period 1993 to 2004. These results are out of sample, in that the model
used to produce the estimated default probabilities was that estimated from
data for 1980 to the end of 1992. Figure 9 provides the analogous results for
5-year-ahead prediction, for 1993 to 2000.
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Figure 8: Average out-of-sample power curve for 1-year default prediction, January 1993
to December, 2003.

The accuracy ratio associated with a given power curve is defined to
be twice the area between the power curve and the 45-degree line. (The
maximum possible accuracy ratio is therefore below 100% by the sample
average of the annual default rate.) Table 3 shows average 1-year and average
5-year accuracy ratios for each of the exit types considered, over the post-
1993 sample periods. Notably, the accuracy ratios are essentially unchanged
when replacing the model as estimated in 1993 with the sequence of models
estimated at the beginnings of each of the respective forecast periods. The
one-year-ahead out-of-sample accuracy ratio for default prediction from our
model, over 1993-2003, is 88%. Hamilton and Cantor (2004) report that,
for 1999-2003, the average accuracy ratio for default prediction based on
Moody’s credit ratings22 is 65%, while those based on ratings adjustments

22Krämer and Güttler (2003) report no statistically significant difference between the
accuracy ratio of Moodys and Standard-and-Poors ratings in a sample of 1927 borrowers.
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Figure 9: Average out-of-sample power curve for 5-year default prediction, January 1993
to December, 1999.

for placements on Watchlist and Outlook are 69%, and those based on sorting
firms by bond yield spreads average 74%.

The out-of-sample accuracy for prediction of merger and acquisition is
negative, indicating no out-of-sample power to discriminate among firms re-
garding their likelihood of being merged or acquired. (Randomly sorting the
firms would produce an accuracy ratio, in a large sample, of approximately
zero.)

AR1 AR5
bankruptcy 0.88 0.69
default 0.87 0.70
failure 0.86 0.70
merger −0.03 −0.01
other exit 0.19 0.11

Table 3: Out-of-sample average accuracy ratios, 1993 to 2004 for 1-year prediction, and
1993 to 2000 for 5-year prediction.

Figures 10 and 11 show the time series of the accuracy ratios for 1-year-
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out and 5-year-out default prediction throughout the out-of-sample period.
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Figure 10: One-year accuracy ratios. Dashed line: bankruptcy. Solid line: default.
Dotted line: other exit. Broken dash-dot line: merger.
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Figure 11: Five-year accuracy ratios. Dashed line: bankruptcy. Solid line: default.
Dotted line: other exit. Broken dash-dot line: merger.

Bharath and Shumway (2004) analyze out-of-sample predictive perfor-
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mance in terms of the average (over quarters) of the fraction of firms in their
sample that default in the subsequent quarter that were sorted by the model
into the lowest-quality decile of firms at the beginning of the quarter. For ex-
ample, for a particular sample, during the period 1991-2003, they report that
sorting based on KMV EDFs places approximately 69% of the quarter-ahead
defaulting firms in the lowest decile. Sorting based on the more elaborate
models developed by Bharath and Shumway (2004) places approximately
77% in the lowest decile. For our own sample and the period 1993-2004, this
accuracy measure rises to 94%.

The model of Beaver, McNichols, and Rhie (2004) based on accounting
ratios places 80.3% of the year-ahead defaulters in the lowest two deciles, out
of sample, for the period 1994-2002. Consistent with the important role of
market variables discovered by Shumway (2001), when Beaver, McNichols,
and Rhie (2004) add stock-market variables in combination with accounting
ratios, this measure goes up to 88.1%, and when they further allow their
model coefficients to adjust over time, this measure rises to 92%, which is
roughly the measure obtained for our model and data.

6 Concluding Remarks

This paper offers an econometric method for estimating term structures of
corporate default probabilities over multiple future periods, conditional on
firm-specific and macroeconomic covariates. We also provide an empirical im-
plementation of this method for the U.S.-listed Industrial firms. The method,
under its assumptions, allows one to combine traditional duration analysis
of the dependence of event intensities on time-varying covariates with con-
ventional time-series analysis of covariates, in order to obtain maximum-
likelihood estimation of multi-period survival probabilities.

Applying this method to data on U.S.-listed Industrial firms over 1980
to 2004, we find that the estimated term structures of default hazard rates
of individual firms in this sector depend significantly, in level and shape, on
the current state of the economy, and especially on the current leverage of
the firm, as captured by distance to default, a volatility-adjusted leverage
measure that is popular in the banking industry.

Our methodology could be applied to other settings involving the forecast-
ing of discrete events over multiple future periods, in which the time-series
behavior of covariates could play a significant role, for example: mortgage
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prepayment and default, consumer default, initial and seasoned equity offer-
ings, merger, acquisition, and the exercise of real timing options, such as the
option to change or abandon a technology.

Our model also allows estimates of portfolio credit risk, as it provides
maximum-likelihood estimates of joint probabilities of default. For a given
maturity T , the default-event correlation between firms i and j is the correla-
tion between the random variables 1{τ(i)<T} and 1{τ(j)<T}. These correlations
can be calculated by using the fact that, in a doubly-stochastic framework,
for stopping times τ(A) and τ(B) that are the first jump times of count-
ing processes with respective intensities λA and λB, the probability of joint
survival to time T is

E(1{τ(A)>T}1{τ(B)>T}) = P (τ(A) > T, τ(B) > T ) = E
(

e−
R

T

0
(λA(t)+λB(t)) dt

)

.

Unfortunately, our estimated model implies unrealistically low estimates of
default correlation, compared to the sample correlations reported by DeServi-
gny and Renault (2002). This is a topic of separate ongoing research.

We conclude by comparing our model with that of structural models of
default, for example Merton (1974). The main distinctions between the two
modeling approaches are the nature of the event that triggers default, and
of course the empirical fit. Our assumptions about the asset process and
distance-to-default process include those of the Merton model as a special
case, and would be identical to those of the Merton model if we take the par-
ticular case of no leverage targeting. That is, removing mean reversion, our
distance to default process is a Brownian motion, just as in Merton (1974),
and our asset process is a geometric Brownian motion, just as in Merton.
With regard to what triggers default, our model is quite different from struc-
tural models, including Merton (1974) as well as first-passage structural mod-
els, such as those of Fisher, Heinkel, and Zechner (1989) and Leland (1994).
The structural models apply a solvency test, regarding whether the distance
to default falls below some barrier, that is in some cases determined endoge-
nously. Our model assumes instead that, at each “small” time period, default
occurs (or not) at random, with a probability that depends on the current
distance to default and other explanatory variables. It is known (for example,
Duffie and Lando (2001)) that these structural models produce highly unreal-
istically shaped term structures of default probabilities, given the continuity
properties of Brownian motion and the undue precision with which distance
to default is assumed to be measured. In particular, the associated default
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probabilities are extremely small for maturities of roughly two years or less
(at typical parameters), even for low-quality firms. Extensions of these struc-
tural models with imperfectly observed leverage (or with significant jumps
in leverage) and with leverage targeting (as suggested by Collin-Dufresne
and Goldstein (2001)) would have more realistic term structures of default
probabilities. Theory as well as our empirical results suggest that enriching
structural models with additional state variables (beyond the distance to de-
fault), such as macro-economic variables, could lead to an improved for such
extended structural models. The evidence that we have presented here may
provide some clues for future research in this direction.

A Construction of Distance to Default

This appendix explains how we construct the distance to default covariate,
following a recipe similar to those of Vassalou and Xing (2004), Crosbie and
Bohn (2002), Hillegeist, Keating, Cram, and Lundstedt (2004), and Bharath
and Shumway (2004). For a given firm, the distance to default is, roughly
speaking, the number of standard deviations of asset growth by which a firm’s
market value of assets exceeds a liability measure. Formally, for a given firm
at time t, the distance to default is

Dt =
ln
(

Vt

Lt

)

+
(

µA − 1
2
σ2

A

)

T

σA

√
T

, (19)

where Vt is the market value of the firm’s assets at time t and Lt is a liability
measure, defined below, that is often known in industry practice as the “de-
fault point.” Here, µA and σA measure the firm’s mean rate of asset growth
and asset volatility, respectively, and T is a chosen time horizon, typically
taken to be 4 quarters.

The default point Lt, following the standard established by Moodys KMV
(see Crosbie and Bohn (2002), as followed by Vassalou and Xing (2004)), is
measured as the firm’s book measure of short-term debt, plus one half of
its long-term debt (Compustat item 51), based on its quarterly accounting
balance sheet. We have measured short term debt as the larger of Compustat
items 45 (“Debt in current liabilities”), and 49 (“Total Current Liabilities”).
If these accounting measures of debt are missing in the Compustat quarterly
file, but available in the annual file, we replace the missing data with the
associated annual debt data.
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We estimate the assets Vt and volatility σA according to a call-option
pricing formula, following the theory of Merton (1974) and Black and Scholes
(1973), under which equity may be viewed as a call option on the value of a
firm’s assets, Vt. In this setting, the market value of equity, Wt, is the option
price at strike Lt and time T to expiration.

We take the initial asset value Vt to be the sum of Wt (end-of-quarter
stock price times number of shares outstanding, from the CRSP database)
and the book value of total debt (the sum of short-term debt and long-term
debt from Compustat). We take the risk-free return r to be the one-year T-
bill rate. We solve for the asset value Vt and asset volatility σA by iteratively
applying the equations:

Wt = VtΦ(d1) − Lte
−rT Φ(d2) (20)

σA = sdev (ln(Vt) − ln(Vt−1)) , (21)

where

d1 =
ln
(

Vt

Lt

)

+ (r + 1
2
σ2

A)T

σA

√
T

, (22)

d2 = d1 − σA

√
T , and Φ( · ) is the standard-normal cumulative distribution

function, and sdev( · ) denotes sample standard deviation. Equation (20) is a
variant of the call-option pricing formula of Black and Scholes (1973), allow-
ing, through (21), an estimate of the asset volatility σA. For simplicity, by
using (21), we avoided the calculation of the volatility implied by the option
pricing model (as in Crosbie and Bohn (2002) and Hillegeist, Keating, Cram,
and Lundstedt (2004)), but instead estimated σA as the sample standard
deviation of the time series of asset-value growth, ln(Vt) − ln(Vt−1).

B Time-Series Parameter Estimates

For the 2-factor interest rate model parameters, our maximum likelihood
parameter estimates, with standard errors in subscripted parentheses, are

kr =

(

0.03 (0.026) −0.021 (0.030)

−0.027 (0.012) 0.034 (0.014)

)

,

θr =

(

3.59 (4.08)

5.47 (3.59)

)

,
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and

Cr =

(

0.5639 (0.035) 0
0.2247 (0.026) 0.2821 (0.008)

)

,

where θr is measured in percentage points.
Joint maximum likelihood estimation of equations (14), (15), and (16),

simultaneously across all firms i in {1, . . . , n} gives the parameter estimates
(with standard errors in subscripted parentheses):

b =
(

0.0090(0.0021) −0.0121(0.0024)

)′

kD =0.0355(0.0003)

σD =0.346(0.0008)

kv =0.015(0.0002)

σv =0.1169(0.0002)

AA′ +BB′ =

(

1 0.448(0.0023)

0.448(0.0023) 1

)

BB′ =

(

0.0488(0.0038) 0.0338(0.0032)

0.0338(0.0032) 0.0417(0.0033)

)

kS =0.1137(0.018)

αS =0.047(0.0019)

θS =0.1076(0.0085)

γS =
(

0.0366(0.0032) 0.0134(0.0028)

)

.′
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Figure 12 shows the cross-sectional distribution of estimated targeted
distance to default, θ̂iD, with standard errors.
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Figure 12: Cross-sectional distribution of estimated targeted distance to default, θ̂iD,
sorted, with (vertically) one-standard-error bands for each.

C Delta-based Standard Errors

The confidence intervals plotted in Figure 3 are asymptotic standard errors
obtained from the Delta method. For this, we require an estimate of the
covariance matrix Σ of the MLE estimator ψ̂i of the portion of the parameter
vector ψi affecting the hazard rates of firm i, which in this case is Xerox. We
let ψi = (γi, µ, ν), where γi is the vector of parameters of the time-series
model for Xit, and where µ and ν parameterize the default and other-exit
intensities, respectively, as in Section 2.
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Fixing Xit = (Dit, Vit, St, rt) and the time horizon s, we write

H(Xit, s;ψi) = G(ψi). (23)

The default probability q(Xit, s;ψi), default-time density qs(Xit, s;ψi),
survival probability p(Xit, s;ψi), and default hazard rate H(Xit, s;ψi) are all
continuous with respect to the parameter vector ψi, by the dominated con-
vergence theorem, using the fact that e−

R

t+s

t
[λ(u)+α(u)] du is strictly positive

and bounded by 1, using the continuity of the probability distribution of the
covariate process with respect to the parameters, using the monotonicity of
the default and other-exit time intensities with respect to the parameters,
and finally using the fact that λ(t + s) is the double-exponential of a nor-
mal variable. Thus, under the consistency assumption that ψ̂i converges in
distribution with sample size to ψi, the continuity of G( · ) implies that the
maximum-likelihood estimator G(ψ̂i) of G(ψi) is also consistent. Moreover,
with the addition of differentiability and other technical conditions, G(ψ̂i)
has the asymptotic variance estimate ∇G(ψi)Σ∇G(ψi)

′, where ∇G( · ) is the
gradient of G and where

Σ =





Σγi
0

Σµ

0 Σν



 (24)

is determined by the asymptotic covariance matrices Σγi
, Σµ, and Σν of γi, µ,

and ν, respectively. These asymptotic covariance matrices are obtained by
the usual method of inverting the Hessian matrix of the likelihood functions,
evaluated at the parameter estimates.

For example, the asymptotic estimate of the covariance matrix of the
MLE estimators of the default intensity parameters (µ0, µ2, µ1, µ2, µ3, µ4),
corresponding to the constant, distance to default, same-firm trailing stock
return, 3-month Treasury rate, and trailing S& P 500 return, respectively, is

Σ̂µ =













0.0128 0.0004 0.0029 −0.0019 0.0034
0.0004 0.0013 −0.0011 −0.0001 −0.0015
0.0029 −0.0011 0.0056 −0.0000 −0.0025
−0.0019 −0.0001 −0.0000 0.0004 −0.0022
0.0034 −0.0015 −0.0025 −0.0022 0.0836













. (25)
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